Impaired pulmonary artery contractile responses in a rat model of microgravity: role of nitric oxide.

نویسندگان

  • Daniel Nyhan
  • Soonyul Kim
  • Stacey Dunbar
  • Dechun Li
  • Artin Shoukas
  • Dan E Berkowitz
چکیده

Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vascular hyporesponsiveness in simulated microgravity: role of nitric oxide-dependent mechanisms.

Simulated microgravity depresses the ability of arteries to constrict to norepinephrine (NE). In the present study the role of nitric oxide-dependent mechanisms on the vascular hyporesponsiveness to NE was investigated in peripheral arteries of the rat after 20 days of hindlimb unweighting (HU). Blood vessels from control rats and rats subjected to HU (HU rats) were cut into 3-mm rings and moun...

متن کامل

INFLUENCE OF ENDO THELIUM REMOVAL AND LNAME ON RESPONSES OF RAT COMMON CAROTID ARTERY TO α-ADRENOCEPTOR AGONISTS

In this study we investigated the effects of endothelium removal and L-NAME on responses to α-adrenoceptor agonists. Male Wistar rats were killed by overdose with pentobarbitone sodium, after which the left and right common carotid arteries were removed. Rings of arteries 3-4 mm in length were cut from each vessel and then mounted in 10 mL isolated organ bath, bathed in Krebs maintained at ...

متن کامل

Relaxation of Rat Main Pulmonary Artery to Electrical Stimulation: Role of Nitric Oxide

The present study was undertaken to determine participation of nitric oxide (NO) in noradrenergic, noncholinergic relaxation induced by electrical field stimulation (EFS) of perivascular nerves in isolated rat main pulmonary artery and its extralobar branches. Electrical field stimulation caused a frequency-dependent relaxation of main pulmonary artery of the rat precontracted with phenylephrin...

متن کامل

Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways

Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...

متن کامل

The effect of DETA NONOate, a nitric oxide donor, on the rate of collagen synthesis in rat as an animal model of diabetes

Exogenous nitric oxide donors such as DETA NONOate, spontaneously release nitric oxide. This study aimed to investigate the effect of DETA NONOate as a nitric oxide releasing drug on the rate of collagen synthesis during the impaired wound healing in a rat model of diabetes. Twelve male Sprague–Dawley rats were transferred into separate metabolic cages. Nine days before wounding, the rats were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 92 1  شماره 

صفحات  -

تاریخ انتشار 2002